

Communication

Switch-Peptides: Controlling Self-Assembly of Amyloid β-Derived Peptides in vitro by Consecutive Triggering of Acyl Migrations

Sonia Dos Santos, Arunan Chandravarkar, Bhubaneswar Mandal, Richard Mimna, Karine Murat, Lydiane Saucde, Patricia Tella, Gabriele Tuchscherer, and Manfred Mutter

J. Am. Chem. Soc., **2005**, 127 (34), 11888-11889• DOI: 10.1021/ja052083v • Publication Date (Web): 10 August 2005 Downloaded from http://pubs.acs.org on March 25, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 22 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

Published on Web 08/10/2005

Switch-Peptides: Controlling Self-Assembly of Amyloid β -Derived Peptides in vitro by Consecutive Triggering of Acyl Migrations

Sonia Dos Santos, Arunan Chandravarkar, Bhubaneswar Mandal, Richard Mimna, Karine Murat, Lydiane Saucède, Patricia Tella, Gabriele Tuchscherer, and Manfred Mutter*

Ecole Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Sciences and Engineering, CH-1015 Lausanne, Switzerland

Received April 1, 2005; E-mail: Manfred.mutter@epfl.ch

The onset of conformational transitions as the origin of peptide self-assembly is considered as a fundamental molecular event in early processes relevant in degenerative diseases.^{1,2} A detailed investigation of these processes is hampered by intrinsic problems, such as the high tendency of the involved peptides for β -sheet formation and spontaneous aggregation, limiting their experimental accessibility.³ We have recently developed a new generation of switch-peptides,⁴ allowing for the induction of conformational transitions using intramolecular O- \rightarrow N-acyl migrations^{5–8} in situ.

For potential applications in vitro and in vivo, we explore the sequential triggering of $O \rightarrow N$ -acyl migrations in amyloid β (A β)-derived switch-peptides as a tool for studying onset and inhibition in polypeptide folding, self-assembly, and aggregation. As shown in Scheme 1, N(**Y**)-protected O-acyl isopeptides ("switch (**S**)-peptides") serve as stable, self-contained folding precursors, in which folding and self-assembly is blocked by the presence of the Ser-, Thr-, or Cys-derived switch (**S**)-elements dissecting the regular peptide backbone by an ester and a flexible C–C bond (**S**_{off}).

Here, we focus on the design and chemical synthesis of S-peptides (Scheme 2) and investigate the specific cleavage of the N-protecting groups, Y, using chemical or enzymatic triggers, T (step a, Scheme 1), the spontaneous intramolecular $O \rightarrow N$ -acyl migration (b) and the induction of folding events (c) such as selfassembly, β -sheet and fibril formation in statu nascendi (ISN) of the molecule. The amphipathic S-peptide I^9 serves as a model for the onset of β -sheets, applying variable triggering systems (Scheme 2). Orthogonal triggering is exemplified for A β -derived **S**-peptides II, taking the fibril nucleating segment A β (14–24)¹⁰ for the in situ induction of helical structures (IIa) and as a guest sequence in a β -sheet promoting host peptide (IIb).⁴ S-peptide IIc serves as a prototype for the consecutive switching on of folding processes in total A β (1-42). For the selective removal of \mathbf{Y}_i by a trigger \mathbf{T}_i , the use of exoproteases with "non-native" specificities, such as pyroglutamate aminopeptidase (pGAP) and D-amino acid peptidase (Dap), or with unique cleavage sites, such as dipeptidyl peptidase IV (DPPIV, specific for N-terminal Axx-Pro), is examined.

Solid-phase synthesis of peptides **I** and **II** was achieved by applying Fmoc/*t*Bu-based chemistry.^{4,12} Most notably, the presence of one (**I**) or two (**II**) **S**-elements results in highly soluble compounds (folding precursors), facilitating HPLC purification and structural characterization. As shown by CD, the conformational decoupling of the **S**-spaced peptide blocks results in flexible random coil (rc) conformations (CD curves **S**_{off}, Figure 1). Even after 24 h at physiological pH, no changes in the HPLC and CD spectra are observed for the **S**_{off} state of the **S**-peptides, pointing to high chemical and conformational stability.

In contrast, the controlled removal of \mathbf{Y} in the individual **S**-elements provokes spontaneous intramolecular O, N-acyl migration, resulting in dramatic changes of the conformational and

Scheme 1. Switch-Peptides as Folding Precursors: Consecutive Triggering of O, N-Acyl Migrations (AcM) in Switch-Peptides (S_{off}) for the Onset (S_{on}) of Peptide Folding and Self-Assembly in statu nascendi (ISN) of the Native Molecule

Scheme 2. Investigated Switch-Peptides and Triggering Systems (see Scheme 1)^a

		Υ ₁	' i
I: Ac-(SL) ₂ - S -(LS) ₂ LG-NH ₂	1	H+	OH-
IIa: Ac-KARADA-S1-[HQKLVFF-S2-EDV]G-NH2	2	Nvoc	hν
	з	ArgPro	DPPIV
IIb: Ac-SL-S1-L[HQKLVFFAEDV]-S2-LG-NH2	4	pGlu	pGap
	5	Arg	Trypsin
llc : Αβ[1-25]- S₁- [27-36]- S₂- [38-42]	6	D-Ala	Dap

 $^aA\beta$ sequences in square brackets. $S=(Y_{1-6})Ser/Thr; S_{1}/S_{2}=(Y_{2}/Y_{1})Ser$ (IIa); $(Y_{3}/Y_{4})Ser$ (IIb); $(Y_{1}/Y_{3})Ser$ (IIc). Nomenclature depsipeptides, see ref 11.

physical properties (\mathbf{S}_{on} state). For example, after adding enzyme DPPIV to **S**-peptide **I**, the evolution of the cleaved dipeptide Arg-Pro (Figure 1A, HPLC peak 3), the gradual disappearance of the \mathbf{S}_{off} (peak 1), as well as the onset of a new peak (2, \mathbf{S}_{on}) reflect the overall time course for steps a and b, respectively (Scheme 1). As a general observation, the evolution and subsequent degradation of the \mathbf{S}_{on} peak points to fast aggregation originating from rc to β -sheet transitions (CD, Figure 1A). As studied on **I**, the time course for the process $\mathbf{S}_{off} \rightarrow \mathbf{S}_{on}$ strongly depends on the triggering system (minutes up to hours in the rate-limiting step a in trigger systems i = 3-6, Scheme 2), whereas the intramolecular O, N-acyl transfer reaction proceeds generally fast (absence of intermediates) at physiological pH (Thr \leq Ser \ll Cys).

The consecutive "switching on" of **S**-elements according to Scheme 1 provides an experimental tool for evaluating the impact of individual peptide segments upon folding and self-assembly. For example, the pH-induced acyl migration at S_2 in **Ha** (HPLC, Figure 1B) does not result in a significant effect upon the CD spectra (predominant rc structure), whereas the switching on of the helix-

Figure 1. (A) CD of enzyme-triggered (T₃) conformational transition of I monitored over 60 min (t = 0 (black), 30 min (pink)). Inset: HPLC of time course; 1, S_{off}; 2, S_{on}; 3, ArgPro. (B) HPLC of the sequential T₁/T₂-triggered acyl migration of IIa: 1, S_{1/2off}; 2, S_{1off/2on}; 3, intermediate 2 after cleavage of Y₂; 4, S_{1/2on}; inset, time course of $h\nu$ cleavage (left) and CD (right) in H₂O/TFE (83/17). (C) HPLC of the sequential T₁/T₃-triggered acyl migration of IIc: 1, S_{1/2off}; 3, S_{1/2on}; inset, kinetics of acyl migrations for peptide IIb (T₃, T₄) and IIc (T₁, T₃).

nucleating system¹³ by photolytic cleavage at S_1 and subsequent acyl migration induces helical conformation (inset (right) Figure 1B). Notably, photolytic cleavage at acidic pH allows one to independently monitor step a (peak 3, S_{off} , Figure 1B; inset (left): time course) and step b (Son, peak 4), opening interesting applications for the use of orthogonal switch arrays in organic and aqueous solvents. Selective switching on of the N- and C-terminal host sequence in **IIb** is achieved upon consecutive addition of triggers T_3 and T_4 , respectively (inset Figure 1C, time course). Again, the sequential order of triggering acyl migrations proves to be essential; setting off the N-terminal Ac-SerLeu by adding T₃ does not affect the overall properties of the peptide (rc conformation, solubility), whereas a conformational transition of type $rc \rightarrow \beta$ -sheet, followed by aggregation, is induced upon ligating the C-terminal SerLeuGlyNH₂ (applying T_4), thus providing interesting clues for the onset of β -sheets.

Finally, the consecutive switching on of peptide segments is exemplified for [Ser³⁷]A β (1-42) containing a chemical (S₁) and enzymatic cleaving (S_2) site (**IIc**). Here, the pH-induced acyl migration at S₁ proceeds very fast ($t_{1/2} = 5$ min, inset, Figure 1C) restoring native A β (1–36) (HPLC, peak 2, Figure 1C). Interestingly, by the subsequent enzymatic switching on $(\mathbf{T}_3, \text{ inset Figure})$ 1C) of the C-terminal segment (37-42), the characteristic phenomena observed for native A β (1-42),³ that is, β -sheet and fibril formation, are initiated, accompanied by self-association and aggregation (disappearance of S_{on} peak 3, Figure 1C). Though these observations will be the subject of detailed conformational analyses,14 our preliminary CD and TEM studies point to the central impact of the hydrophobic C-terminus of A β (1-42) upon selfassociation and aggregation. Most notably, consecutive switching on allows for the experimental identification of aggregation "hot spots", setting the stage for a rational design of specific inhibitors.

In summary, we present a novel concept for the controlled, sequential onset of peptide assembly in vitro. In particular, the enzymatic triggering of O, N-acyl migrations allows for novel applications in prodrug design and biosensor technology. In further exploring the immense potential of peptide and protein synthesis, switch-peptides may become a general tool for the study of early steps in polypeptide self-assembly and inhibition as a key process in degenerative diseases.

Acknowledgment. This work was supported by the Swiss National Science Foundation. DPPIV was a generous gift from PD Dr. Eric Grouzmann, CHUV, Lausanne, Switzerland.

Supporting Information Available: Switch-peptide synthesis and additional figures. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Self-Assembling Peptide-Systems in Biology, Medicine and Engineering; Aggeli, A., Boden, N., Zhang, S., Eds.; Kluwer Academic Publishing: Dordrecht, The Netherlands, 2001; references therein.
 Soto, C. Nat. Rev. Neurosci. 2003, 4, 49–60.
- (2) Solo, C. *Nat. Rev. Neurosci.* 2003, *4*, 49–60.
 (3) Gorman, P. M.; Chakrabartty, A. *Biopolymers* 2001, *60*, 381–394.
- (4) Mutter, M.; Chandravarkar, A.; Boyat, C.; Lopez, J.; Dos Santos, S.; Mandal, B.; Mimna, R.; Murat, K.; Patiny, L.; Saucède, L.; Tuchscherer, G. Angew. Chem., Int. Ed. 2004, 43, 4172–4178.
- (5) Coltart, D. M. Tetrahedron 2000, 56, 3449-3491
- (6) Hamada, Y.; Matsumoto, H.; Yamaguchi, S.; Kimura, T.; Hayashi, Y.; Kiso, Y. Bioorg. Med. Chem. 2002, 10, 4155–4167.
- (7) Carpino, L. A.; Krause, E.; Sferdean, C. D.; Schühmann, M.; Fabian, H.; Bienert, M.; Bevermann, M. *Tetrahedron Lett.* **2004**, 45, 7519–7523.
- Bienert, M.; Beyermann, M. *Tetrahedron Lett.* 2004, *45*, 7519–7523.
 (8) Sohma, Y.; Hayashi, Y.; Kimura, M.; Chiyomori, Y.; Taniguchi, A.; Sasaki, M.; Kimura, T.; Kiso, Y. *J. Pept. Sci.* 2005, *11*, 441–451.
- (9) Mutter, M.; Gassmann, R.; Buttkus, U.; Altmann, K.-H. Angew. Chem., Int. Ed. Engl. 1991, 30, 1514–1516.
- (10) Tjernberg, L. O.; Callaway, D. J. E.; Tjernberg, A.; Hahne, S.; Lillihöök, C.; Terenius, L.; Thyberg, J.; Nordstedt, C. J. Biol. Chem. 1999, 274, 12619–12625.
- (11) Filip, S. V.; Cavelier, F. J. Pept. Sci. 2004, 10, 115-118.
- (12) Houben-Weyl, Methods of Organic Chemistry; Goodman, M., Felix, A., Moroder, L., Toniolo, C., Eds.; Thieme: Stuttgart, 2003; Vol. E 22d.
- (13) Shepard, N. E.; Abbenante, G.; Fairlie, D. P. Angew. Chem., Int. Ed. 2004, 43, 2687–2690.
- (14) Dos Santos, S.; Chandravarkar, A.; Adrian, M.; Dubochet, J.; Camus, M.-S.; Schmid, A.; Lashuel, H.; Tuchscherer, G.; Mutter, M. Manuscript in preparation.

JA052083V